A U.S. Commercial Service Resource Guide

eMobility in Europe
Welcome to Europe!
There are more than 500 million consumers in the 28 European Union (EU) Member States. The European automotive industry employs a total of 12.9 million people, generating as much as EUR 839 billion in annual revenues—6.9 percent of the EU’s GDP.

In 2012, 13.7 million motorized vehicles (MVs) were newly registered in the region, adding to a total of 277 million MVs on Europe’s roads. While market shares for absolute annual electric vehicle (EV) sales are still marginal, EVs are the fastest growing vehicle segment in many European markets.

This collection of market overviews provides U.S. exporters of electric vehicles, charging infrastructure, and related products a first quick overview of trends and developments in Europe’s dynamic mobility and transportation industry.

While specific trends may apply for the whole of Europe, market potential and degree of technology implementation or application may vary to a great extent, due to the diversity of various important demographic, economic, political, and social factors across Europe.

The heterogeneous and fragmented state of the industry is also reflected in the design and scope of the individual market briefs. For additional information and specific requests, please contact the U.S. Commercial Service offices listed on the following pages for assistance.

The U.S. Commercial Service team of domestic and international trade specialists provides targeted export assistance to the U.S. mobility and transportation industry. Our team members are located throughout the United States and at U.S. Embassies and Consulates around the world.
Table of Contents

Mobility and Transport
Trends and Developments in Europe 3
European Union ... 6
Austria .. 9
Belgium ... 14
Czech Republic ... 17
Denmark ... 25
Finland .. 28
France ... 35
Germany ... 50
Greece .. 64
Israel ... 66
Italy ... 70
The Netherlands ... 76
Norway ... 79
Slovak Republic .. 82
Sweden .. 88
Turkey .. 92
United Kingdom ... 97
Take Your Next Steps 102
Mobility and Transport Trends and Developments in Europe

This guide focusses on electric vehicles and charging infrastructure in selected European markets. The term eMobility (synonyms: electric mobility, E-mobility, or electromobility) is used to describe trends and developments for related vehicle concepts and their integration into existing transport systems as well as future mobility roadmaps. eMobility describes the transformation from an oil-based to an electricity-based transportation system, characterized by integrated, multi-modal, and intelligent traffic systems. It is a cross-sectional matter which comprises mobility, environment, as well as energy sectors that includes sustainable transport of goods, motorized passenger transport, as well as public transport. Due to the potential to significantly reduce transport-related emissions (CO₂, pollution, noise), eMobility has a positive impact on the global climate as well as local environments.

Changing User Habits and Demand in Europe: Implications for the Traditional Auto Industry and Related Sectors

- Reality today: decreasing vehicle sales in (Western) Europe
- Changing role of cars: cars are no longer seen as the primary symbol for mobility and individual freedom—rather smartphones, mobile internet and access to information
- New role for automakers: increasingly becoming mobility providers, instead of merely vehicle manufacturers

eMobility has been identified by European legislators as a viable means to reach strategic future targets, e.g. environmental protection and the reduction of dependence on oil and energy imports. The industry sees eMobility as essential for being able to comply with EC environmental regulation and increasingly understands it also as an opportunity to address and compensate for negative effects due to structural changes in traditional (Western) European mobility and transport markets, namely decreasing vehicle sales and changed perception and role of cars (socio-economic effects).
Summary
As a new and emerging market segment, the European Union (EU) e-vehicles sector (including fully electric vehicles (EVs) and plug-in hybrid electric vehicles (PHEVs) may offer substantial opportunities for U.S. exporters. According to analysis presented by the Transport and Environment (TandE) environmental think tank, 50,000 e-vehicles were sold across the EU in 2013. The market has the potential of increasing to 100,000 vehicles by 2015, to 500,000 by 2021 and to 1 million by 2025. Furthermore, the European Commission (EC) expects that by the year 2020, France will have 2 million, Germany will have 1 million, the United Kingdom will have 1.55 million and Spain will have 2.5 million e-vehicles on their respective roads. It is clear that new charging infrastructure will be necessary to support this growing market.

A coordinated EU approach to charging infrastructure is essential if the e-vehicle market is to experience steady growth in the coming years.

EU Policy-Level Initiatives
On January 24, 2013, the EC published a Proposal for a Directive on the Deployment of Alternative Fuels Infrastructure to specifically address the need for more e-vehicle charging infrastructure in the EU. In the proposal, the EC estimated the number of e-vehicles that it expects to be circulating in the Member States (MS) by the year 2020. Based on these numbers, the MS proposed targets for publicly accessible charging infrastructure in order to support and encourage the growing market of e-vehicles. To help achieve these targets, the EC may co-fund e-vehicle charging infrastructure projects in certain Member States under the Trans-European Transport Network program (TEN-T, bit.ly/1tFxBzZ). The proposed Directive also attempts to solve the issue of finding a common European solution for e-vehicle charging infrastructure while respecting national safety requirements. Pending an agreement among the MS, the proposal may be

Statistics
Members: 28 States
Population: 506.7 million
GDP (USD): 17.35 trillion (2013)

Contact
Louis W. Fredricks
louis.fredricks@trade.gov
(32-2) 811-4194
adopted in fall 2014. In order for the EC to achieve its policy objectives, the above-mentioned proposal must be supported by common standards and/or technical specifications for the charging infrastructure. This will ensure interoperability and connectivity across the EU.

The infrastructure for charging e-vehicles connects the car with electric charging stations throughout urban areas as well as at private residences. Its technologies are separated by two dominant Modes and two dominant cable Types. Modes refer to the managed charging processes (smart charging), and the various types refer to the connected charging devices used for charging e-vehicles (the charging plugs and charging couplers). In Europe, “mode 2” and “mode 3” are heavily endorsed by charging infrastructure developers. Mode 2 refers to the non-managed charging of e-vehicles (simply charging the vehicle, even at “peak” times of electricity demand), whereas mode 3 refers to the managed charging of e-vehicles, taking into account energy and load management to give the user and the electric grid the flexibility on the amount of voltage and time spent charging at home or at public charging installations.

In July 2014, the EC published a draft mandate requesting that the European Standards Organizations (ESOs) “develop European standards, containing interoperable technical specifications with a single solution for electricity supply for transport” and “amend or supplement EN 62196-2 [referred to below] “Category type 2” for socket outlet to include variants with mechanical shutters, in order to ensure coherence with the national legislation of Member States.” This is only one example of a standard that the EC considers necessary to achieve its policy objectives. It is also important to keep in mind that developing standards can be a lengthy process that involves many different stakeholders.

Regulatory Environment

Consumer safety is a priority for the EU. Therefore, not surprising is the need to address testing and certification of e-vehicle charging infrastructure. Through the adoption of EU product safety rules, the EC ensures that products placed on the EU market have been properly tested and are deemed safe and interoperable. Manufacturers must take responsibility for the safety and interoperability of their products.

With that in mind, e-vehicle charging infrastructure may fall under the scope of Directive 2006/95/EC relating to electrical equipment designed for use within certain voltage limits (LVD) and Directive 2004/108/EC relating to electromagnetic compatibility (EMC). Both Directives require CE marking. In terms of conformity assessment, manufacturers can self-certify that their products fulfill the essential requirements of the EMC and LVD Directives. The use of harmonized European (EN) standards can be very helpful in demonstrating conformity with EU legislation in that they provide ‘presumption of conformity’ with the essential requirements of the Directives. For example, the following standards have been harmonized under the LVD:
Germany

Summary
Germany’s National Electromobility Development Plan (Nationaler Entwicklungsplan Elektromobilitaet, available at bit.ly/1xOTHTb) defines the federal government’s future sustainable transport policy and proclaims various strategic goals and targets in order to become the leading market for eMobility:

- Climate protection (reduce greenhouse gas emissions (CO₂))
- Safeguard future energy supply and (increase) independence from fossil fuels
- Expansion of Germany’s role as a leading industry and research and development nation and location
- Reduction of local emissions (pollutants, particulates, noise), to imorve living conditions, especially in urban environments
- Integration of electric vehicles (EVs) and energy grid
- Implementation of EVs as part of intelligent, integrated future mobility concepts

To achieve these goals, in 2010 Germany’s government implemented a National Electric Mobility Platform (NPE), which serves as an advisory board to the federal government, bringing together representatives from industry, politics, research and development, associations, and unions. NPE’s main objective was to draft and implement a strategy, specific proposals, measures (for example, demonstrating and testing projects, as well as financing of strategic research and development projects) to realize the government’s ambitious roadmap:

- Shift towards an entirely fossil-free mobility by 2050
- Become the leading eMobility market and technology provider by 2020
- 1,000,000 EVs on Germany’s roads by 2020
- Promotion of a comprehensive network of charging infrastructure, with an emphasis on renewables

Statistics
Capital: Berlin
Population: 83.8 million (2013)
GDP (USD): 3.4 trillion (2013)
Currency: Euro (EUR/€)
Language: German

Contact
Felix Happe
felix.happe@trade.gov
+49-(0) 69-7535-3153
These targets are in line with Germany’s larger vision to transit from nuclear and fossil fuels to renewables (namely wind power, solar energy, hydropower, biomass, and geothermal), often referred to as Germany’s “Energiewende”—the nation’s energy transition. Taken together, these goals already suggest the transformation and further integration of both energy and mobility sector and clearly identifies them as cornerstones of Germany’s future policy. EVs thus play an important role in Germany’s future energy and transport strategy. According to recent studies, market potential and positive environmental impact of EVs further increases significantly in scenarios where EVs have a high degree of integration into the (increasingly renewable) energy supply and grid. Consequently, EVs may serve as flexible and mobile energy storage for renewable energy, thus providing additional stability to the grid.

Electric Vehicles

Registered Passenger Vehicles in Germany as of January 1, 2014

<table>
<thead>
<tr>
<th>Fuel Type</th>
<th>Number of Vehicles</th>
<th>Market Share (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gasoline</td>
<td>29,956,296</td>
<td>68.3</td>
</tr>
<tr>
<td>Diesel</td>
<td>13,215,190</td>
<td>30.1</td>
</tr>
<tr>
<td>LPG</td>
<td>500,867</td>
<td>1.14</td>
</tr>
<tr>
<td>CNG</td>
<td>79,065</td>
<td>0.18</td>
</tr>
<tr>
<td>Electric</td>
<td>12,156</td>
<td>0.028</td>
</tr>
<tr>
<td>Hybrid</td>
<td>85,575</td>
<td>0.19</td>
</tr>
<tr>
<td>Total</td>
<td>43,851,230</td>
<td>100</td>
</tr>
</tbody>
</table>

Source: Federal Motor Transport Agency (KBA)

As of January 2014, 43.85 million passenger cars were registered in Germany. About 30 million (68.3 percent) run on gasoline, 13.2 million (30.1 percent) on diesel, 500,000 (1.14 percent) on liquid gas (LPG) and about 80,000 (0.18 percent) on natural gas (CNG). Market shares of EVs are marginal—currently, only 12,156 (0.028 percent) battery electric vehicles (BEVs) as well as 85,575 hybrids (0.19 percent) are registered in Germany. While the absolute numbers of EVs are indeed marginal, the dynamic development and market potential for vehicles with alternative fuels/drive train technology is indicated in the dynamic growth rates of respective vehicle segments (January-July 2014 vs. same period in 2013): BEVs +64.8 percent, Hybrids +9.5 percent, CNG +11.8 percent. Accordingly, annual EV registrations showed significant growth rates during recent years and, according to the German Automotive Manufacturers Association (VDA), the number of battery electric passenger vehicles is expected to exceed 10,000 EVs (2013: 6,051) for the first time in 2014. The increase in new EV models including hybrids, plug-in hybrids (PHEVs) and BEVs offered by German OEMs has been a further stimulus: In 2014, 16 new models were introduced and another 13 have been announced for 2015.
Registrations of Passenger EVs, 2013–14

<table>
<thead>
<tr>
<th>Vehicle Type</th>
<th>Q1 2013</th>
<th>Q2 2013</th>
<th>Q3 2013</th>
<th>Q4 2013</th>
<th>Q1 2014</th>
<th>Q2 2014</th>
</tr>
</thead>
<tbody>
<tr>
<td>All Hybrids</td>
<td>6,032</td>
<td>6,389</td>
<td>6,801</td>
<td>7,126</td>
<td>6,264</td>
<td>7,551</td>
</tr>
<tr>
<td>PHEVs</td>
<td>245</td>
<td>264</td>
<td>374</td>
<td>502</td>
<td>421</td>
<td>1,154</td>
</tr>
<tr>
<td>BEVs</td>
<td>1,032</td>
<td>1,357</td>
<td>1,482</td>
<td>2,180</td>
<td>1,845</td>
<td>2,343</td>
</tr>
<tr>
<td>Total</td>
<td>7,064</td>
<td>7,746</td>
<td>8,283</td>
<td>9,306</td>
<td>8,109</td>
<td>9,894</td>
</tr>
</tbody>
</table>

Source: KBA Annual Data, 2014

Electric mobility in Germany is not limited to passenger vehicles but also affects other vehicle segments, such as commercial vehicles (buses, trucks, special purpose vehicles), smaller utility vehicles (vans used for delivery and transport), as well as powered two-wheelers (PTWs), such as scooters, electric motorcycles and eBikes/Pedelecs.

Battery and fuel cell electric (FCEVs) buses are currently only deployed in marginal quantities, mainly for demonstration and/or research and development projects. As of January 2014, a total of 380 buses with alternative drive systems (99 BEVs, 244 hybrids, as well as 37 others, including fuel cell/hydrogen-powered buses) were registered in Germany.

Initial tests and demonstrations with hybrid, battery, and fuel cell electric buses revealed several obstacles for public transport authorities: high purchasing prices, inadequate financing and public procurement mechanisms, and additional issues due to special requirements regarding maintenance and repair, range, and charging mechanisms. Meanwhile, compressed natural gas (CNG) is often regarded as a more efficient mid-term alternative, with advantages in both emissions and cost, as compared to diesel and hybrid/electric buses. In 2014, approximately 1,700 CNG-powered buses were operated by German transport authorities (out of the approximately 76,000 buses operating in Germany, about 33,000 are used by public transport authorities). According to current assessment, market potential for buses with electrified drive train technology will not increase significantly until efficiencies of alternative drive train technologies improve—a significant reduction of the additional EV premium (due to high battery cost), range, the existence of viable charging options, as well as targeted financing and procurement procedures. In order to further test and promote electric buses, advances in these areas are currently tested in special research and demonstration projects, such as ZeEUS project (Zero Emission Urban Bus System, zeeus.eu). ZeEUS is funded by the European Commission (EC) and tests innovative electric bus technologies with different charging infrastructure solutions in eight demonstration sites across six European countries, to validate their economic, environmental and social viability.
Vehicle Charging

The existence of a comprehensive charging infrastructure has been identified as one of the main drivers for the success of eMobility in Germany and Europe, especially availability and access to public charging infrastructure is regarded as a perquisite for future growth of EV segments. Accordingly, government and industry have been cooperating to spur the development of a public charging infrastructure in Germany. NPE's most recent state of the industry report from 2012 suggests that, in order to achieve the ambitious target of 1,000,000 registered EVs by 2020, approximately 950,000 charging points (800,000 private as well as 150,000 public charging points, including 7,000 fast charging points) will be necessary.

Research on current user behavior shows that German EV owners predominantly charge at home or the workplace. However, the existence of public charging infrastructure, especially access to fast charging stations, has been identified as a vital element in order to address and overcome user range anxiety. Insufficient availability and deployment of charging points thus signals a limitation of free mobility to consumers (=user restriction) and the existence of public charging infrastructure has a positive psychological effect on consumers.

An official source for a comprehensive list of existing and accessible public charging infrastructure in Germany is currently not available. In part, this is also due to the fragmented infrastructure and high number of operators in the market. Available data suggests numbers ranging from 2,122 to 2,551 charging stations with approximately 4,454 to 7,168 charging points/outlets. Accordingly, alternative sources such as online services and/or mobility platforms such as GoingElectric (goingelectric.de) and ChargeMap (de.chargemap.com), (municipal) charging networks such as Ladenetz.de, and industry associations such as the German Association of Energy and Water Industries (BDEW, bit.ly/1xOXH6g) must be consulted to estimate the number of charging stations.

Public charging stations are mostly installed in and around big cities such as Berlin, Hamburg, Stuttgart, the Ruhr region, and Munich. In rural areas, charging stations are only starting to emerge. Most of the time, public charging stations can be found in connection with public parking locations, on the open street or at other (semi-)public places such as hotels, railway stations, restaurants, gas stations, as well as commercial districts and large business premises. The majority of currently available stations is limited to AC mode (low power supply) without fast charging (DC) options, mainly due to considerably higher costs associated with charging stations that support fast charging options (DC mode). However, due to the strategic importance of fast charging stations, various attempts, such as joint projects by research institutes as well as industry such as Schnellladenetz für Achsen und Metropolen (SLAM, bit.ly/1CWzo6z), were initiated in order to establish a fast charging network on main transport routes between large metropolises in Germany. Most charging stations in Germany are operated and maintained by municipalities, energy providers and specialized private companies (TESLA is currently offering 15 of its SuperChargers (bit.ly/1pTo8xB) in Germany and 56 across Europe).
Currently, as many as 200 providers operate the existing stations in Germany. The highly fragmented structure is characterized by various different designs with a variety of available plug types, access protocols, mode compatibilities and pay systems. This technical and structural heterogeneity has negative effects, such as high access barriers and confused and frustrated customers, impeding comprehensive user access to existing charging options. Stakeholders are therefore currently seeking ways to harmonize respective technology (to achieve technical standardization and interoperability). Various projects with public and private stakeholders were initiated to overcome this fragmentation, such as cooperation projects and platforms between municipalities (ladenetz.de) or joint ventures such as Hubject (hubject.com), one of the most prominent initiatives working on the interoperability of charging infrastructure across Europe.

Charging stations in Germany can be located in several ways:

- Via apps and/or online-platforms (GoingElectric, Ladenetz)
- Crowdsourcing projects that are trying to aggregate respective information (ChargeMap, lemnet.org)
- Directly though the websites of individual operators (RWE, EnBW, ChargeNow, Ladenetz, PlugSurfing).

Today, various business models to sell and distribute private or semi-public charging stations already exist. Manufacturers like Keba, Siemens and Belectric Drive offer various solutions to car fleet operators—including the utilization of local renewables such as photovoltaic or wind power through a smart grid. Private charging stations are offered by various suppliers/vendors, such as energy providers, car manufacturers or directly through specialized manufacturers and respective distribution networks (ABB, Mennekes, etc.) and are expected to experience growth in the future. Moreover, hybrids between public and private charging stations exist as well. Companies such as Park&Charge e.V. (park-charge.de) and Drehstromnetz (drehstromnetz.de) are selling cheap and standardized charging stations and organize peer-to-peer charging station networks. A number of specialized private companies such as service providers and system integrators emerged, such as German company The Mobility House (mobilityhouse.com) which is cooperating with renowned industry partners to provide eMobility solutions that include B2B (automotive industry, leasing services and energy utilities) as well as B2C operations.

Technology

A detailed report (in German) on technical norms, standards, and requirements for charging infrastructure in Germany is published by NPE (bit.ly/1qK1woA). Additionally, the EU-funded project North Sea Electric Mobility Network (E-Mobility NSR) provides a valuable overview on the Standardization of EV Recharging Infrastructures (bit.ly/1rYdQUI, 2/2013) that includes an overview of existing standards (charging modes, plug types, identification and billing systems).
In Amsterdam, the Hague, Rotterdam, Arnhem and Utrecht, taxi owners and companies with small delivery Vans can submit a request to receive up to EUR 2,000 additional subsidy when purchasing a new electrical vehicle. This is initiated to decrease the air pollution percentages in those big cities.

Since October 1, 2012, the Dutch government works together with each city in Holland to give electrical driven taxi’s and other owners from small light electrical trucks a subsidy of EUR 3,000.

Leading Projects, Networks, Clusters, and PPPs

- ESLA is working hard on expending their Super Charger stations throughout Europe. They just opened their 50th station in France. Tesla distribution center for Europe is located in Tilburg.

- Platform Elektrische Mobiliteit (PTM, part of the RAI association) explores innovations, new vehicle technologies and future mobility possibilities.

- EcoMobiel trade show, Rotterdam, October 7–8, 2014 (ecomobiel.nl)
Norway

Summary
Norway is the first country where electric cars have surpassed one percent of the national car ownership. This has made Norway the most important and growing market in Europe for EVs. In the worldwide perspective, Norway now holds around 5 percent of the world EVs. At the end of July there were 32,122 registered EVs in total. Norway has enacted politics that give full tax exempts for zero-emission vehicles to increase the purchase of electric vehicles among individuals. Researches state that the typical EV user is usually a middle-aged man with higher education and a family. Also, the electric car owner has an annual gross income of USD 150,000 a year, compared with USD 80,000 for owners of petrol-engine cars.

In terms of public transportation, there has been large purchase of buses with hybrid technology and in the future it may be a solution to use more biogas buses with hybrid technology, as an added eco-friendly solution for minimizing emissions. Ruter AS, which has monopoly in the public transport sector in Oslo, states that 40 percent of the energy used in public transport (the metro excluded), comes from renewable energy and has a goal to eliminate all their buses running on petrol-engine by 2020 and replacing them with EVs and other environmental friendly solutions.

The accumulated EV market share by brand includes:

- Nissan—41.4 percent
- Tesla—16.6 percent
- Volkswagen—9.1 percent
- Peugeot—5.2 percent
- Mitsubishi—7.6 percent
- Other—20.1 percent

Electric car sales were especially high in March, as Tesla launched their EVs in Norway. However, the new Volkswagen Golf was the most sold EV in August.
Vehicle Charging
There are 6102 registered public charging stations as of September 2014. Of these, 2500 located in Oslo/Akershus. Charging is a mix of complimentary public stations and fee-based Tesla supercharging stations. Scandinavia has the largest network of charging points and they are easily to be navigated to by companies that are offering maps out to show availabilities of charging points. Nissan and Norgesgruppen (Whole sale) are working together to get between 50 and 100 superchargers at Kiwi stores around the country. Volkswagen agreed to join this project and people will soon be able to quickly recharge most electrical vehicles types while shopping. It will be a free service to begin with, but as the sale of EVs is increasing, a fee will be necessary.

Paying for EV charging (supercharging) is possible through many methods such as with credit card, SMS, smart phone apps and prepaid cards that you refill. The large scale development of the charging infrastructure is dependent on private entities that see profitability in this market in the long term, especially car manufacturers that will invest further as the number of EVs on the road grows.

There are many variations of plug types in use. Public plugs are most often slow or medium charging. The most popular plug types include:

- Schuko—87.2 percent
- Type 2—4 percent
- Type 2 and Schuko—3.8 percent
- CHAdeMO—1.7 percent
- Tesla—1.3 percent
- Type 1—0.65 percent
- Other—1.35 percent

Official Government Position and Programs
The Norwegian government took on a commitment to cut the emissions of greenhouse gases equivalent to 30 percent of Norway’s emissions in 1990. The Climate Cure 2020 assumed that emissions must be reduced to 42–44 million tons of CO₂. To accomplish this there has been made specific measures to promote EVs and charging infrastructure. To stimulate the sales of EVs they implemented higher vehicle fee to petroleum-engine cars, and very generous benefits for use and ownership of EVs. VAT and sales taxes are entirely exempted for EVs and these make significant share of the acquisition cost. For example, you can buy over 2.5 Camaros for each Tesla Model S in the U.S. In comparison you can buy 2.5 Teslas for each Camaro in Norway.

There are many additional benefits:

- Free parking in municipal parking spaces
- Free passage in all the tolls and exemption from congestion fee
- Free entry to drive in the collective field
- Free charging in public charging stations
- 50 percent discount on company car tax
- Free transportation of EVs on ferries
Take Your Next Steps

What Can the U.S. Commercial Service Do for You?
The U.S. Commercial Service (CS) is the export promotion arm of the U.S. Department of Commerce’s International Trade Administration. Our global network of more than 1400 trade professionals is located throughout the United States and in U.S. Embassies and Consulates in more than 70 countries. Whether you are looking to make your first international sale or expand to additional markets, we offer the expertise you need to connect with lucrative opportunities to increase your bottom line.

The U.S. Commercial Service Automotive Team includes specialists throughout the United States and in U.S. Embassies and Consulates around the world; we serve companies supplying automotive, truck, or motorcycle-related parts, services, and manufacturing/testing equipment. Contact one of our team members to help grow your exports to this dynamic region; detailed contact information appears at the bottom of each country profile.

Our Services
Our trade specialists work to address issues and trade opportunities, to ensure you have the information you need to grow your business. This resource guide is just one of the ways we can provide the information you need to set priorities and plan for business growth. To learn more about how we can help you, as well as information about individual industries, please visit export.gov/industry.

Market Intelligence
- Analyze market potential and foreign competitors
- Obtain useful information on best prospects, financing, laws, and cultural issues
- Conduct background checks on potential buyers and distributors

Trade Counseling
- Develop effective market entry and sales strategies
- Understand export documentation requirements and import regulations of foreign markets
- Navigate U.S. government export controls, compliance, and trade financing options

Business Matchmaking
- Connect with pre-screened potential partners
- Promote your product or service to prospective buyers at trade events worldwide
- Meet with international industry and government decision makers in your target market(s)

Commercial Diplomacy
- Overcome trade obstacles to successfully enter international markets
- Benefit from coordinated U.S. government engagement with foreign governments to protect U.S. business interests
- Access U.S. government trade advocacy for your foreign government procurement bids